An Improvement of Power Demand Prediction Method using Weather Information and Machine Learning: A Case of a Clinic in Japan (II)

Author:

Inagata Tomoya1,Matsunaga Keita2,Mizuno Yuji3,Kurokawa Fujio4,Tanaka Masaharu4,Matsui Nobumasa4

Affiliation:

1. Graduate School of Engineering, Nagasaki Institute of Applied Science,Nagasaki,Japan

2. Nagasaki Institute of Applied Science,Faculty of Engineering,Nagasaki,Japan

3. Osaka Electro-Communication University,Dept. Medical Science,Osaka,Japan

4. Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science,Nagasaki,Japan

Funder

JSPS KAKENHI

Publisher

IEEE

Reference20 articles.

1. Deep Learning and Optimization Algorithms Based PV Power Forecast for an Effective Hybrid System Energy Management;ammar;Int Journal of Renewable Energy,2022

2. Comparison of Photovoltaic Production Forecasting Methods;kermia;Int Journal of Renewable Energy,2022

3. Short-Term Demand Prediction Using an Ensemble of Linearly-Constrained Estimators

4. Comparison of Three Methods for a Weather Based Day-Ahead Load Forecasting

5. Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparison of Data Partitioning Method using LSTM for Power Demand at a Clinic;2024 12th International Conference on Smart Grid (icSmartGrid);2024-05-27

2. Optimizing Power Plant Operations Through Machine Learning Based Electricity Demand Forecasting;2023 5th International Conference on Advancements in Computing (ICAC);2023-12-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3