Improving Rating Prediction in Multi-Criteria Recommender Systems Via a Collective Factor Model
Author:
Affiliation:
1. Lightspeed & Quantum Studios, Tencent Inc., Shenzhen, China
2. Microsoft, Beijing, China
3. College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
4. Baidu, Sunnyvale, CA, USA
Funder
National Natural Science Foundation of China
Open Research Fund from Guangdong Laboratory of Artificial Intelligence and Digital Economy
Natural Science Foundation of Guangdong Province of China
Shenzhen Talents Special Project - Guangdong Provincial Innovation and Entrepreneurship Team Supporting Project
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Computer Networks and Communications,Computer Science Applications,Control and Systems Engineering
Link
http://xplorestaging.ieee.org/ielx7/6488902/6930788/10113232.pdf?arnumber=10113232
Reference63 articles.
1. Learning Attitudes and Attributes from Multi-aspect Reviews
2. Microscope
3. Latent multi-criteria ratings for recommendations
4. Predicting ratings in multi-criteria recommender systems via a collective factor model;fan;Proc DeMaL Web Conf,0
5. Collaborative filtering with multi-component rating for recommender systems;sahoo;Proc 16th Workshop Inf Technol Syst,0
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Physical model-assisted deep reinforcement learning for energy management optimization of industrial electric-hydrogen coupling system with hybrid energy storage;Journal of Energy Storage;2024-10
2. Robust Preference-Guided Based Disentangled Graph Social Recommendation;IEEE Transactions on Network Science and Engineering;2024-09
3. Artificial intelligence for hydrogen-enabled integrated energy systems: A systematic review;International Journal of Hydrogen Energy;2024-08
4. An Empirical Analysis on Leveraging User Reviews with NLP-Enhanced Word Embeddings for App Rating Prediction;Lecture Notes on Data Engineering and Communications Technologies;2024
5. An efficient approach for improving the predictive accuracy of multi-criteria recommender system;International Journal of Information Technology;2023-11-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3