TimeAutoAD: Autonomous Anomaly Detection With Self-Supervised Contrastive Loss for Multivariate Time Series

Author:

Jiao Yang1ORCID,Yang Kai1ORCID,Song Dongjing2,Tao Dacheng3ORCID

Affiliation:

1. Department of Computer Science and Technology, Tongji University, Shanghai, China

2. Deparment of Computer Science, University of Connecticut, Storrs, CT, USA

3. JD Explore Academy in JD.com, Beijing, China

Funder

National Natural Science Foundation of China

Shenzhen Institute of Artificial Intelligence and Robotics for Society

Fundamental Research Funds for the Central Universities

Fundamental Research Funds of Shanghai

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

Computer Networks and Communications,Computer Science Applications,Control and Systems Engineering

Reference69 articles.

1. AutoSensing: Automated feature engineering and learning for classification task of time-series sensor signals;ukil,0

2. Exploring shared structures and hierarchies for multiple NLP tasks;chen,2018

3. NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection

4. Deep autoencoding Gaussian mixture model for unsupervised anomaly detection;zong;Proc Int Conf Learn Representations,0

5. Autoencoders, unsupervised learning, and deep architectures;baldi;Proc ICML Workshop Unsupervised Transfer Learn,0

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. M$^{2}$STL: Multi-Range Multi-Level Spatial-Temporal Learning Model for Network Traffic Prediction;IEEE Transactions on Network Science and Engineering;2024-09

2. A new data-driven framework for progressive anomaly event alerts in spacecraft based on reconstruction discrepancy;Advances in Space Research;2024-08

3. A self-supervised contrastive change point detection method for industrial time series;Engineering Applications of Artificial Intelligence;2024-07

4. Federated Learning While Providing Model as a Service: Joint Training and Inference Optimization;IEEE INFOCOM 2024 - IEEE Conference on Computer Communications;2024-05-20

5. Temporal-Frequency Masked Autoencoders for Time Series Anomaly Detection;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3