FTGAN: A Novel GAN-Based Data Augmentation Method Coupled Time–Frequency Domain for Imbalanced Bearing Fault Diagnosis
Author:
Affiliation:
1. School of Information Science and Engineering, Yunnan University, Kunming, China
2. Faculty of Information Engineering and Automation, Kunming University of Science and Technology (KUST), Kunming, China
Funder
Yunnan Provincial Major Science and Technology Special Plan Projects
National Natural Science Foundation of China
Training Plan for Young and Middle-Aged Academic and Technological Leaders in Yunnan Province
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Instrumentation
Link
http://xplorestaging.ieee.org/ielx7/19/10012124/10012400.pdf?arnumber=10012400
Reference49 articles.
1. Intelligent Fault Diagnosis via Semisupervised Generative Adversarial Nets and Wavelet Transform
2. An unsupervised fault diagnosis method for rolling bearing using STFT and generative neural networks
3. Conditional GAN and 2-D CNN for Bearing Fault Diagnosis With Small Samples
4. A case study of conditional deep convolutional generative adversarial networks in machine fault diagnosis
5. Data augmentation in fault diagnosis based on the Wasserstein generative adversarial network with gradient penalty
Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Multi-source domain adaptation using diffusion denoising for bearing fault diagnosis under variable working conditions;Knowledge-Based Systems;2024-10
2. Few-Shot power transformers fault diagnosis based on Gaussian prototype network;International Journal of Electrical Power & Energy Systems;2024-09
3. A Bearing Fault Diagnosis Method Based on Vibration Signal Extension and Time–Frequency Information Fusion Network Under Small Sample Conditions;IEEE Sensors Journal;2024-09-01
4. Review of imbalanced fault diagnosis technology based on generative adversarial networks;Journal of Computational Design and Engineering;2024-08-31
5. A generalized method for diagnosing multi-faults in rotating machines using imbalance datasets of different sensor modalities;Engineering Applications of Artificial Intelligence;2024-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3