New RUL Prediction Method for Rotating Machinery via Data Feature Distribution and Spatial Attention Residual Network
Author:
Affiliation:
1. School of Mechanical Engineering, Suzhou University of Science and Technology, Suzhou, China
2. School of Automation, Nanjing University of Posts and Telecommunications, Nanjing, China
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Instrumentation
Link
http://xplorestaging.ieee.org/ielx7/19/10012124/10049211.pdf?arnumber=10049211
Reference36 articles.
1. Automatic multi-differential deep learning and its application to machine remaining useful life prediction
2. Remaining useful life estimation in prognostics using deep convolution neural networks
3. Prediction of remaining useful life of multi-stage aero-engine based on clustering and LSTM fusion
4. Time Series Prediction Method Based on Variant LSTM Recurrent Neural Network
5. Remaining useful life prediction of aeroengine based on SSAE and similarity matching;wang;J Beijing Univ Aeronaut Astronaut,2022
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Supervised contrastive learning based dual-mixer model for Remaining Useful Life prediction;Reliability Engineering & System Safety;2024-11
2. Data-driven method embedded physical knowledge for entire lifecycle degradation monitoring in aircraft engines;Reliability Engineering & System Safety;2024-07
3. Enhanced residual convolutional domain adaptation network with CBAM for RUL prediction of cross-machine rolling bearing;Reliability Engineering & System Safety;2024-05
4. Remaining Useful Life Prediction of Rolling Bearing Based on Multi-Domain Mixed Features and Temporal Convolutional Networks;Applied Sciences;2024-03-11
5. A feature disentanglement and unsupervised domain adaptation of remaining useful life prediction for sensor-equipped machines;Reliability Engineering & System Safety;2024-02
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3