Reliable IoT Paradigm With Ensemble Machine Learning for Faults Diagnosis of Power Transformers Considering Adversarial Attacks
Author:
Affiliation:
1. Department of Electrical Engineering, Faculty of Engineering (Shoubra), Benha University, Cairo, Egypt
2. Department of Mechanical Engineering, Palestine Technical University–Kadoorie, Tulkarm, Palestine
Funder
National Kaohsiung University of Science and Technology
National Science and Technology Council
Contact Software Company of IoT Platform
Palestine Technical University–Kadoorie
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Instrumentation
Link
http://xplorestaging.ieee.org/ielx7/19/10012124/10198317.pdf?arnumber=10198317
Reference62 articles.
1. Effective IoT-based deep learning platform for online fault diagnosis of power transformers against cyberattacks and data uncertainties
2. Interpretation of gas-in-oil analysis using new IEC publication 60599 and IEC TC 10 databases
3. Conventional ratio and artificial intelligence (AI) diagnostic methods for DGA in electrical transformers;samy;Int Electr Eng J,2015
4. ZOO
5. A Novel Sensor Placement Strategy for an IoT-Based Power Grid Monitoring System
Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Classification of complex power quality disturbances under noisy environment using Root-Music and least square techniques;Electric Power Systems Research;2025-01
2. A novel BiGRU multi-step wind power forecasting approach based on multi-label integration random forest feature selection and neural network clustering;Energy Conversion and Management;2024-11
3. Research on monitoring method for ice-covered state of transmission lines based on conductor end displacement;Electric Power Systems Research;2024-11
4. Crude oil futures and the short-term price predictability of petroleum products;Energy;2024-10
5. Energy management of renewable energy connected electric vehicles charging using Internet of things: Hybrid MRA-SDRN approach;Energy;2024-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3