Incipient Fault Detection in Power Distribution System: A Time–Frequency Embedded Deep-Learning-Based Approach
Author:
Affiliation:
1. School of Electrical Engineering and Automation, Hefei University of Technology, Hefei, China
2. Department of Computer and Network Engineering, The University of Electro-Communications, Chofu, Japan
Funder
National Natural Science Foundation of China
Anhui Provincial Natural Science Foundation
111 Project
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Instrumentation
Link
http://xplorestaging.ieee.org/ielx7/19/10012124/10056403.pdf?arnumber=10056403
Reference46 articles.
1. Series Arc Fault Detection and Localization in DC Distribution System
2. High-Frequency Fault Analysis-Based Pilot Protection Scheme for a Distribution Network With High Photovoltaic Penetration
3. Novel Method Based on Variational Mode Decomposition and a Random Discriminative Projection Extreme Learning Machine for Multiple Power Quality Disturbance Recognition
4. High-impedance Fault Detection Method based on Stochastic Resonance for a Distribution Network with Strong Background Noise
5. A Sequential Bayesian Approach to Online Power Quality Anomaly Segmentation
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Incipient Fault Diagnosis Method via Joint Adaptive Signal Decomposition;IEEE Sensors Journal;2024-08-01
2. A Neural-Symbolic Model for Fan Interpretable Fault Diagnosis on Steel Production Lines;IEEE Internet of Things Journal;2024-07-01
3. Digital Twin Modeling for Hydropower System Based on Radio Frequency Identification Data Collection;Electronics;2024-06-30
4. Incipient Fault Detection in Distribution Systems Using Line Sensor Data: A Real-World Study;2024 IEEE/PES Transmission and Distribution Conference and Exposition (T&D);2024-05-06
5. Machine Learning-based Fault Diagnosis for Distribution Networks with Distributed Renewable Energy Resources;2024 6th Asia Energy and Electrical Engineering Symposium (AEEES);2024-03-28
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3