RDLINet: A Novel Lightweight Inception Network for Respiratory Disease Classification Using Lung Sounds
Author:
Affiliation:
1. Department of Electrical Engineering, Indian Institute of Technology Patna, Patna, Bihar, India
Funder
Ministry of Education (MoE), Government of India, through the Prime Minister Research Fellowship (PMRF) Program
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Instrumentation
Link
http://xplorestaging.ieee.org/ielx7/19/10012124/10174701.pdf?arnumber=10174701
Reference44 articles.
1. Deep Neural Network for Respiratory Sound Classification in Wearable Devices Enabled by Patient Specific Model Tuning
2. One-dimensional convolutional neural network architecture for classification of mental tasks from electroencephalogram
3. Robust and Interpretable Temporal Convolution Network for Event Detection in Lung Sound Recordings
4. GLU variants improve transformer;shazeer;arXiv 2002 05202,2020
5. Convolutional Neural Networks Learning from Respiratory data
Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. ILDNet: A Novel Deep Learning Framework for Interstitial Lung Disease Identification Using Respiratory Sounds;2024 International Conference on Signal Processing and Communications (SPCOM);2024-07-01
2. LoRaSONN: A Novel Self-Operational Neural Network Learning Framework for RF-Fingerprint Identification of LoRa Devices;2024 IEEE Wireless Communications and Networking Conference (WCNC);2024-04-21
3. High-sensitive state perception method for inverter-fed machine turn insulation based on FrFT-Mel;Global Energy Interconnection;2024-04
4. An Enhanced Deep Learning Approach for Disease Classification from Respiratory Sound;2024 2nd International Conference on Device Intelligence, Computing and Communication Technologies (DICCT);2024-03-15
5. A deep CNN-based acoustic model for the identification of lung diseases utilizing extracted MFCC features from respiratory sounds;Multimedia Tools and Applications;2024-03-12
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3