Deep Learning Method to Analyze the Bi-LSTM Model for Energy Consumption Forecasting in Smart Cities

Author:

Balasubramaniyan S.1,Kumar P.K.2,Vaigundamoorthi M.3,Rahuman A. Kaleel4,Solaimalai Gautam5,Sathish T.6,Vidhya R.G.7

Affiliation:

1. Mailam Engineering College,Department of Electrical and Electronics Engineering,Mailam

2. Sri Sairam Engineering College,Department of Physical Education,Chennai

3. Karpagam Academy of Higher Education,Department of Electrical and Electronics Engineering,Coimbatore

4. PSNA College Of Engineering And Technology,Department of Electronics and Communication Engineering,Dindigul

5. University of Austin Georgie tech,Department of Artificial Intelligence and Machine Learning,30332

6. Saveetha school of Engineering, SIMATS,Department of Mechanical Engineering,Chennai

7. HKBK College of Engineering,Department of ECE

Publisher

IEEE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning Revolutionizing Performance Evaluation: Recent Developments and Breakthroughs;2024 2nd International Conference on Sustainable Computing and Smart Systems (ICSCSS);2024-07-10

2. Hybrid Deep Learning (CNN-BiLSTM-LSTM) Model for Prediction of Short Power Consumption;2024 8th International Conference on Smart Cities, Internet of Things and Applications (SCIoT);2024-05-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3