Spatio-Temporal Generative Adversarial Network Based Power Distribution Network State Estimation With Multiple Time-Scale Measurements
Author:
Affiliation:
1. Polytechnic Institute and College of Electrical Engineering, Zhejiang University, Hangzhou, Zhejiang, China
2. College of Electrical Engineering, Zhejiang University, Hangzhou, Zhejiang, China
Funder
Technology Research and Development Program of Zhejiang Province
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Computer Science Applications,Information Systems,Control and Systems Engineering
Link
http://xplorestaging.ieee.org/ielx7/9424/10192510/10008049.pdf?arnumber=10008049
Reference31 articles.
1. Semi-supervised learning with generative adversarial networks;odena,2016
2. Data-driven Robust State Estimation Through Off-line Learning and On-line Matching
3. Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
4. Unsupervised representation learning with deep convolutional generative adversarial networks;radford,2016
5. Iterative-Interpolation Super-Resolution Image Reconstruction
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Optimal resource scheduling of multi-functional edge computing devices in digital distribution networks;Ain Shams Engineering Journal;2024-09
2. Load forecasting based on dynamic adaptive and adversarial graph convolutional networks;Energy and Buildings;2024-06
3. A robust distribution network state estimation method based on enhanced clustering Algorithm: Accounting for multiple DG output modes and data loss;International Journal of Electrical Power & Energy Systems;2024-06
4. Application and progress of artificial intelligence technology in the field of distribution network voltage Control:A review;Renewable and Sustainable Energy Reviews;2024-03
5. Research on Power Grid Natural Disaster Data Processing and Analysis Methods Based on Deep Learning;2024 Asia-Pacific Conference on Software Engineering, Social Network Analysis and Intelligent Computing (SSAIC);2024-01-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3