Federated Domain Generalization: A Secure and Robust Framework for Intelligent Fault Diagnosis
Author:
Affiliation:
1. State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, China
Funder
Ministry of Science and Technology of the People's Republic of China
Fundamental Research Funds for the Central Universities
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Computer Science Applications,Information Systems,Control and Systems Engineering
Link
http://xplorestaging.ieee.org/ielx7/9424/10411967/10196327.pdf?arnumber=10196327
Reference30 articles.
1. Cloud-edge-device collaboration mechanisms of deep learning models for smart robots in mass personalization
2. Edge Computing on IoT for Machine Signal Processing and Fault Diagnosis: A Review
3. Secure and Efficient Federated Learning for Smart Grid With Edge-Cloud Collaboration
4. Domain Adaptation with Category Attention Network for Deep Sentiment Analysis
5. Auxiliary Information-Guided Industrial Data Augmentation for Any-Shot Fault Learning and Diagnosis
Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Federated transfer learning for machinery fault diagnosis: A comprehensive review of technique and application;Mechanical Systems and Signal Processing;2025-01
2. A federated cross-machine diagnostic framework for machine-level motors with extreme label shortage;Advanced Engineering Informatics;2024-08
3. Decentralized federated domain generalization with cluster alignment for fault diagnosis;Control Engineering Practice;2024-07
4. Detection, Prevention, and Monitoring Techniques for Industrial Equipment – a brief review;2024 16th International Conference on Electronics, Computers and Artificial Intelligence (ECAI);2024-06-27
5. Data privacy protection: A novel federated transfer learning scheme for bearing fault diagnosis;Knowledge-Based Systems;2024-05
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3