Novel Ramanujan Digital Twin for Motor Periodic Fault Monitoring and Detection
Author:
Affiliation:
1. State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, China
Funder
National Natural Science Foundation of China
Jiangsu Provincial Key Research and Development Program
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Computer Science Applications,Information Systems,Control and Systems Engineering
Link
http://xplorestaging.ieee.org/ielx7/9424/10288179/10050792.pdf?arnumber=10050792
Reference36 articles.
1. The Inter-turns Short Circuit Fault Detection based on External Leakage Flux Sensing and VMD-HHT Analytical Method for DFIG
2. A Digital Twin-Based Operation Status Monitoring System for Port Cranes
3. Detection of Stator Short-Circuit Faults in Induction Motors Using the Concept of Instantaneous Frequency
4. Ramanujan Sums in the Context of Signal Processing—Part II: FIR Representations and Applications
5. Stator Inter-turns Short Circuit Fault Detection in DFIG Using Empirical Mode Decomposition Method on Leakage Flux
Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Investigation of condition monitoring system for grid connected photovoltaic (GCPV) system with power electronics converters using machine learning techniques;e-Prime - Advances in Electrical Engineering, Electronics and Energy;2024-09
2. Efficiency-Centered Fault Diagnosis of In-Service Induction Motors for Digital Twin Applications: A Case Study on Broken Rotor Bars;Machines;2024-09-01
3. Smartphone detector examination for transportation mode identification utilizing imbalanced maximizing-area under the curve proximal support vector machine;Signal, Image and Video Processing;2024-08-13
4. A Review of Digital Twinning for Rotating Machinery;Sensors;2024-08-02
5. Developing flood mapping procedure through optimized machine learning techniques. Case study: Prahova river basin, Romania;Journal of Hydrology: Regional Studies;2024-08
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3