Reconstruction-Assisted Feature Encoding Network for Histologic Subtype Classification of Non-Small Cell Lung Cancer
Author:
Affiliation:
1. School of Information Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
2. Department of Radiology, Anhui Chest Hospital, Hefei, Anhui, China
Funder
National Natural Science Foundation of China
Central Government Transfer Payment Financial Construction
Elite Special Scientific Research Fund of China Red Cross Foundation
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Health Information Management,Electrical and Electronic Engineering,Computer Science Applications,Health Informatics
Link
http://xplorestaging.ieee.org/ielx7/6221020/9882959/09832737.pdf?arnumber=9832737
Reference53 articles.
1. Elaboration of a multimodal MRI-based radiomics signature for the preoperative prediction of the histological subtype in patients with non-small-cell lung cancer
2. Latent feature representation with stacked auto-encoder for AD/MCI diagnosis
3. Pattern Classification for Gastrointestinal Stromal Tumors by Integration of Radiomics and Deep Convolutional Features
4. 3D MRI brain tumor segmentation using autoencoder regularization;myronenko;Proc Int Conf Med Image Comput Comput Assist Intervention,2018
5. Cancer Diagnosis Using Deep Learning: A Bibliographic Review
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deep learning in radiology for lung cancer diagnostics: A systematic review of classification, segmentation, and predictive modeling techniques;Expert Systems with Applications;2024-12
2. A multi-instance tumor subtype classification method for small PET datasets using RA-DL attention module guided deep feature extraction with radiomics features;Computers in Biology and Medicine;2024-05
3. Sparse and Hierarchical Transformer for Survival Analysis on Whole Slide Images;IEEE Journal of Biomedical and Health Informatics;2024-01
4. Efficient Model for Prediction of Non-small Cells Lung Cancer via Deep Q-Learning;Lecture Notes in Networks and Systems;2024
5. Multi-view Representation Learning for Histologic Subtype Classification of Lung Cancer;Proceedings of the 2023 6th International Conference on Machine Learning and Natural Language Processing;2023-12-27
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3