PFLF: Privacy-Preserving Federated Learning Framework for Edge Computing
Author:
Affiliation:
1. School of Computer Science, Nanjing University of Post and Telecommunication, Nanjing, China
2. School of Network and Communication Engineering, Jinling Institute of Technology, Anhui, Wuhu, China
Funder
National Natural Science Foundation of China
Postgraduate Research and Practice Innovation Program of Jiangsu Province
Natural Research Foundation of Nanjing University of Posts and Telecommunications
Anhui Provincial Key Laboratory of Network and Information Security
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Computer Networks and Communications,Safety, Risk, Reliability and Quality
Link
http://xplorestaging.ieee.org/ielx7/10206/9652463/09772495.pdf?arnumber=9772495
Reference46 articles.
1. Local privacy and statistical minimax rates;duchi;Proc Annu IEEE Symp Foundations Comput Sci,2013
2. Adaptive Federated Learning in Resource Constrained Edge Computing Systems
3. A generic framework for privacy preserving deep learning;ryffel;arXiv 1811 04017,2018
4. Learning differentially private recurrent language models;mcmahan;arXiv 1710 06963,2017
5. Differentially private meta-learning;li;arXiv 1909 05830,2019
Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A privacy-preserving federated graph learning framework for threat detection in IoT trigger-action programming;Expert Systems with Applications;2024-12
2. Balancing privacy and performance in federated learning: A systematic literature review on methods and metrics;Journal of Parallel and Distributed Computing;2024-10
3. Strategic Gradient Transmission With Targeted Privacy-Awareness in Model Training: A Stackelberg Game Analysis;IEEE Transactions on Artificial Intelligence;2024-09
4. MChain-SFFL: Multi-Chain Aggregation Privacy Preserving for Server-Free Federated Learning;IEEE Transactions on Network and Service Management;2024-08
5. Communication-Efficient and Privacy-Preserving Aggregation in Federated Learning With Adaptability;IEEE Internet of Things Journal;2024-08-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3