Deep Reinforcement Learning for Online Resource Allocation in IoT Networks: Technology, Development, and Future Challenges
Author:
Affiliation:
1. La Trobe University,Australia
2. Fuzhou University,China
3. CSIRO DATA61,Australia
4. University of Sydney,Australia
Funder
Australian Research Council
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Computer Science Applications
Link
http://xplorestaging.ieee.org/ielx7/35/10155718/10155733.pdf?arnumber=10155733
Reference15 articles.
1. Constrained Reinforcement Learning for Resource Allocation in Network Slicing
2. Cooperative Multi-Agent Deep Reinforcement Learning for Resource Management in Full Flexible VHTS Systems
3. Cooperative caching for scalable video coding using value-decomposed dimensional networks
4. Addressing Function Approximation Error in Actor-Critic Methods;fujimoto;Proc 35th Int'l Conf Machine Learning,2018
5. Deep Reinforcement Learning for Online Computation Offloading in Wireless Powered Mobile-Edge Computing Networks
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Efficient Scheduling of Energy-Constrained Tasks in Internet of Things Edge Computing Networks;International Journal of Swarm Intelligence Research;2024-08-07
2. Energy efficient mode selection for V2V communications using reinforcement learning;2024 International Conference on Renewable Energies and Smart Technologies (REST);2024-06-27
3. Partial NOMA Based Online Task Offloading for Multi-Layer Mobile Computing Networks;ICC 2024 - IEEE International Conference on Communications;2024-06-09
4. Development and Application of Online Learning System Based on Artificial Intelligence;2024 Third International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE);2024-04-26
5. Intelligent Detection and Automatic Repair of Cement Pole Defects Based on Deep Reinforcement Learning;2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT);2024-03-15
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3