Physics-Informed Neural Networks for Solving Parametric Magnetostatic Problems
Author:
Affiliation:
1. Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
2. School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
Funder
Fulbright Commission in Colombia
Colombian Administrative Department of Science, Technology and Innovation–Colciencias
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology
Link
http://xplorestaging.ieee.org/ielx7/60/9970267/09788008.pdf?arnumber=9788008
Reference44 articles.
1. A Stochastic Approximation Method
2. Understanding the difficulty of training deep feedforward neural networks;glorot;Proc 13th Int Conf Artif Intell Statist JMLR Workshop Conf,0
3. Monte Carlo Statistical Methods
4. Physics-informed neural networks for inverse problems in nano-optics and metamaterials
5. Learning the solution operator of parametric partial differential equations with physics-informed DeepONets
Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Physics-informed discretization-independent deep compositional operator network;Computer Methods in Applied Mechanics and Engineering;2024-11
2. Sensitivity analysis using Physics-informed neural networks;Engineering Applications of Artificial Intelligence;2024-09
3. Transfer learning‐based physics‐informed neural networks for magnetostatic field simulation with domain variations;International Journal of Numerical Modelling: Electronic Networks, Devices and Fields;2024-07
4. Convolutional Physics- Informed Neural Networks for Fast Prediction of Core Losses in Axisymmetric Transformers;2024 IEEE 21st Biennial Conference on Electromagnetic Field Computation (CEFC);2024-06-02
5. Solving forward and inverse problems of contact mechanics using physics-informed neural networks;Advanced Modeling and Simulation in Engineering Sciences;2024-05-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3