Hyperspectral Image Classification With Contrastive Self-Supervised Learning Under Limited Labeled Samples
Author:
Affiliation:
1. Hunan Engineering Technology Research Center for 3D Reconstruction and Intelligent Application, School of Information Science and Engineering, Hunan Institute of Science and Technology, Yueyang, China
Funder
Scientific Research Fund of Hunan Provincial Education Department
Graduate Research and Innovation Project of Hunan Province
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Geotechnical Engineering and Engineering Geology
Link
http://xplorestaging.ieee.org/ielx7/8859/9651998/09734031.pdf?arnumber=9734031
Reference20 articles.
1. Self-Supervised Learning of Pretext-Invariant Representations
2. A simple framework for contrastive learning of visual representations;chen;Proc Int Conf Mach Learn,2020
3. Momentum Contrast for Unsupervised Visual Representation Learning
4. Bootstrap your own latent: A new approach to self-supervised learning;grill;arXiv 2006 07733,2020
5. Siamese neural networks for one-shot image recognition;koch;Proc Deep Learn Workshop (ICML),2015
Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Probabilistic deep metric learning for hyperspectral image classification;Pattern Recognition;2025-01
2. Dynamic weighted residual ensemble learning for hyperspectral image classification driven by features and samples;Heliyon;2024-08
3. Estimating Physical Information Consistency of Channel Data Augmentation for Remote Sensing Images;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07
4. Joint negative–positive-learning based sample reweighting for hyperspectral image classification with label noise;Pattern Recognition Letters;2024-07
5. Toulouse Hyperspectral Data Set: A benchmark data set to assess semi-supervised spectral representation learning and pixel-wise classification techniques;ISPRS Journal of Photogrammetry and Remote Sensing;2024-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3