Enabling High-fidelity Modeling of Digital Twin for Hydraulic Systems: KP-PSO Based Parameter Identification
Author:
Affiliation:
1. College of Electronics and Information Engineering, Tongji University,Shanghai,China,201804
Funder
National Key R&D Program of China
Publisher
IEEE
Link
http://xplorestaging.ieee.org/ielx7/10218726/10218397/10218888.pdf?arnumber=10218888
Reference16 articles.
1. A Digital Twin Based Estimation Method for Health Indicators of DC–DC Converters
2. Review of digital twin about concepts, technologies, and industrial applications
3. Digital Twin for Degradation Parameters Identification of DC-DC Converters Based on Bayesian Optimization
4. An Aggregation Degree Based PSO Algorithm
5. Fault diagnosis and predictive maintenance for hydraulic system based on digital twin model
Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. TPC: A Digital Twin-Based Predictive Control Method for Tailplane Control;IEEE Transactions on Industrial Informatics;2024-08
2. An Embedded Digital Twin of Power Electronic Converter based on GA-PSO Real-Time Parameter Identification;2024 IEEE Transportation Electrification Conference and Expo (ITEC);2024-06-19
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3