Low-Latency Federated Learning With DNN Partition in Distributed Industrial IoT Networks
Author:
Affiliation:
1. School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China
2. Data61, CSIRO, Sydney, NSW, Australia
3. Department of Electronics Engineering, Shanghai Jiao Tong University, Shanghai, China
Funder
National Key Project
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Future Network Grant of Provincial Education Board in Jiangsu
Zhejiang Laboratory Open Research Project
Jiangsu Specially-Appointed Professor Program 2021
Shanghai Kewei
Pudong
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering,Computer Networks and Communications
Link
http://xplorestaging.ieee.org/ielx7/49/10044995/09999679.pdf?arnumber=9999679
Reference51 articles.
1. UAV Communications for Sustainable Federated Learning
2. Matching-Theory-Based Low-Latency Scheme for Multitask Federated Learning in MEC Networks
3. Jointly Optimizing Client Selection and Resource Management in Wireless Federated Learning for Internet of Things
4. Energy-Efficient Federated Learning Over UAV-Enabled Wireless Powered Communications
5. Joint User Association and Resource Allocation for Wireless Hierarchical Federated Learning With IID and Non-IID Data
Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Client selection for federated learning using combinatorial multi-armed bandit under long-term energy constraint;Computer Networks;2024-08
2. Fault Diagnosis and Localization of Transmission Lines Based on R-Net Algorithm Optimized by Feature Pyramid Network;INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL;2024-07-01
3. DESIGN: Online Device Selection and Edge Association for Federated Synergy Learning-enabled AIoT;ACM Transactions on Intelligent Systems and Technology;2024-06-15
4. An Optimized Channel Resource Utilization Scheme in Wireless Field Networks for IIoT;ICC 2024 - IEEE International Conference on Communications;2024-06-09
5. Gradient sparsification for efficient wireless federated learning with differential privacy;Science China Information Sciences;2024-03-26
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3