Aggregation Service for Federated Learning: An Efficient, Secure, and More Resilient Realization

Author:

Zheng Yifeng1ORCID,Lai Shangqi2ORCID,Liu Yi3ORCID,Yuan Xingliang2ORCID,Yi Xun4ORCID,Wang Cong3ORCID

Affiliation:

1. School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen, Shenzhen, China

2. Faculty of Information Technology, Monash University, Clayton, VIC, Australia

3. Department of Computer Science, City University of Hong Kong, Hong Kong

4. School of Computing Technologies, RMIT University, Melbourne, VIC, Australia

Funder

Basic and Applied Basic Research Foundation of Guangdong Province

Shenzhen High-Level Talents Research Start-up Fund

Australian Research Council

Monash-Data61 collaborative research

Research Grants Council of Hong Kong

Shenzhen Municipality Science and Technology Innovation Commission

National Natural Science Foundation of China

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

Electrical and Electronic Engineering

Reference46 articles.

1. Sealed-Glass Proofs: Using Transparent Enclaves to Prove and Sell Knowledge

2. Fedpaq: A communication-efficient federated learning method with periodic averaging and quantization;reisizadeh;Proc Int Conf Artif Intell Statist,2020

3. Intel software guard extensions,2020

4. Towards federated learning at scale: System design;bonawitz;Proc Conf Mach Learn Syst,2019

5. Fastsecagg: Scalable secure aggregation for privacy-preserving federated learning;kadhe;CoRR,2020

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. TAPFed: Threshold Secure Aggregation for Privacy-Preserving Federated Learning;IEEE Transactions on Dependable and Secure Computing;2024-09

2. BadSampler: Harnessing the Power of Catastrophic Forgetting to Poison Byzantine-robust Federated Learning;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

3. PSFL: Ensuring Data Privacy and Model Security for Federated Learning;IEEE Internet of Things Journal;2024-08-01

4. A Survey on Federated Unlearning: Challenges, Methods, and Future Directions;ACM Computing Surveys;2024-07-19

5. FedREM: Guided Federated Learning in the Presence of Dynamic Device Unpredictability;IEEE Transactions on Parallel and Distributed Systems;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3