A Proactive Eavesdropping Game in MIMO Systems Based on Multiagent Deep Reinforcement Learning

Author:

Guo Delin1ORCID,Ding Hui2,Tang Lan1ORCID,Zhang Xinggan1ORCID,Yang Lvxi3ORCID,Liang Ying-Chang4ORCID

Affiliation:

1. School of Electronic Science and Engineering, Nanjing University, Nanjing, China

2. State Key Laboratory of Air Traffic Management Systems and Technology, Nanjing, China

3. School of Information Science and Engineering, Southeast University, Nanjing, China

4. Center for Intelligent Networking and Communications (CINC), University of Electronic Science and Technology of China (UESTC), Chengdu, China

Funder

National Natural Science Foundation of China

State Key Laboratory of Air Traffic Management System and Technology

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computer Science Applications

Reference61 articles.

1. Wiretap Channel With Full-Duplex Proactive Eavesdropper: A Game Theoretic Approach

2. Artificial-Noise-Aided Secure Transmission in Wiretap Channels With Transmitter-Side Correlation

3. Deep reinforcement learning from self-play in imperfect-information games;heinrich;arXiv 1603 01121,2016

4. Nash Q-learning for general-sum stochastic games;hu;J Mach Learn Res,2003

5. Markov games as a framework for multi-agent reinforcement learning

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MFGD3QN: Enhancing Edge Intelligence Defense Against DDoS With Mean-Field Games and Dueling Double Deep Q-Network;IEEE Internet of Things Journal;2024-07-01

2. A Survey of Deep Reinforcement Learning in Game Playing;2024 MIT Art, Design and Technology School of Computing International Conference (MITADTSoCiCon);2024-04-25

3. Multiagent Reinforcement Learning for Antijamming Game of Frequency-Agile Radar;IEEE Geoscience and Remote Sensing Letters;2024

4. Safe Multi-Agent Reinforcement Learning for Wireless Applications Against Adversarial Communications;IEEE Transactions on Information Forensics and Security;2024

5. Distributed-Training-and-Execution Multi-Agent Reinforcement Learning for Power Control in HetNet;IEEE Transactions on Communications;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3