Hierarchical Federated Learning With Quantization: Convergence Analysis and System Design

Author:

Liu Lumin1ORCID,Zhang Jun1ORCID,Song Shenghui1ORCID,Letaief Khaled B.1ORCID

Affiliation:

1. Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong

Funder

General Research Fund from the Research Grants Council of Hong Kong

Publisher

Institute of Electrical and Electronics Engineers (IEEE)

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computer Science Applications

Reference31 articles.

1. Gradient sparsification for communication-efficient distributed optimization;wangni;Proc Adv Neural Inf Process Syst,2018

2. ATOMO: Communication-efficient learning via atomic sparsification;wang;Proc Adv Neural Inf Process Syst,2018

3. Fast Federated Learning by Balancing Communication Trade-Offs

4. QSGD: Communication-efficient SGD via gradient quantization and encoding;alistarh;Proc Adv Neural Inf Process Syst,2017

5. Ensemble distillation for robust model fusion in federated learning;lin;Proc Adv Neural Inf Process Syst,2020

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wireless federated learning for PR identification and analysis based on generalized information;Intelligent Systems with Applications;2024-09

2. Distributed Minimax Fair Optimization over Hierarchical Networks;Proceedings of the 53rd International Conference on Parallel Processing;2024-08-12

3. Lightweight and privacy-preserving hierarchical federated learning mechanism for artificial intelligence-generated image content;Journal of Real-Time Image Processing;2024-08

4. Scalable Hierarchical Over-the-Air Federated Learning;IEEE Transactions on Wireless Communications;2024-08

5. The Effect of Quantization in Federated Learning:A Rényi Differential Privacy Perspective;2024 IEEE International Mediterranean Conference on Communications and Networking (MeditCom);2024-07-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3