Resource Consumption for Supporting Federated Learning in Wireless Networks
Author:
Affiliation:
1. National Key Laboratory on Communications, University of Electronic Science and Technology of China, Chengdu, China
2. James Watt School of Engineering, University of Glasgow, Glasgow, U.K.
Funder
National Science Foundation of China
Huawei Cooperation Project
Fundamental Research Funds for the Central Universities
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Applied Mathematics,Electrical and Electronic Engineering,Computer Science Applications
Link
http://xplorestaging.ieee.org/ielx7/7693/9944944/09798758.pdf?arnumber=9798758
Reference37 articles.
1. Convergence analysis of two-layer neural networks with ReLU activation;li;Proc 31st Int Conf Neural Inf Process Syst,2017
2. Scheduling Policies for Federated Learning in Wireless Networks
3. Deep Anomaly Detection for Time-Series Data in Industrial IoT: A Communication-Efficient On-Device Federated Learning Approach
4. Access Control for RAN Slicing based on Federated Deep Reinforcement Learning
Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Integrated Sensing, Communication, and Computing for Cost-effective Multimodal Federated Perception;ACM Transactions on Multimedia Computing, Communications, and Applications;2024-06-13
2. Straggler-Aware Federated Learning Based on Adaptive Clustering to Support Edge Intelligence;ICC 2024 - IEEE International Conference on Communications;2024-06-09
3. Best Response Dynamics Convergence for Generalized Nash Equilibrium Problems: An Opportunity for Autonomous Multiple Access Design in Federated Learning;IEEE Internet of Things Journal;2024-05-15
4. Unleashing Edgeless Federated Learning With Analog Transmissions;IEEE Transactions on Signal Processing;2024
5. Communication and Computation Efficient Federated Learning for Internet of Vehicles With a Constrained Latency;IEEE Transactions on Vehicular Technology;2024-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3