Super Resolution Approach for the Satellite Data Based on the Generative Adversarial Networks

Author:

Lavreniuk Mykola1,Kussul Nataliia1,Shelestov Andrii1,Lavrenyuk Alla2,Shumilo Leonid3

Affiliation:

1. Space Research Institute NASU-SSAU,Kyiv,Ukraine

2. National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”,Kyiv,Ukraine

3. University of Maryland,Department of Geographical Sciences,College Park,MD,USA

Publisher

IEEE

Reference23 articles.

1. Image super-resolution using deep convolutional networks;chao;IEEE Transactions on Pattern Analysis and Machine Intelligence,2015

2. Accurate image super-resolution using very deep convolutional networks;jiwon;Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,0

3. Accelerating the super-resolution convolutional neural network;chao;European Conference on Computer Vision,0

4. Real-time single image and video superresolution using an efficient sub-pixel convolutional neural network;wenzhe;Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,0

5. Enhanced deep residual networks for single image super-resolution;bee;Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,0

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic Degradation Intensity Estimation for Adaptive Blind Super-Resolution: A Novel Approach and Benchmark Dataset;IEEE Transactions on Circuits and Systems for Video Technology;2024

2. A Survey of Deep Learning for Remote Sensing, Earth Intelligence and Decision Making;Lecture Notes in Electrical Engineering;2024

3. Image Super Resolution Using ESRGAN: A Preliminary Experimental Study;2023 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET);2023-11-15

4. Generative Adversarial Networks for the Satellite Data Super Resolution Based on the Transformers with Attention;IGARSS 2023 - 2023 IEEE International Geoscience and Remote Sensing Symposium;2023-07-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3