Improving Performance of Motor Imagery-Based Brain–Computer Interface in Poorly Performing Subjects Using a Hybrid-Imagery Method Utilizing Combined Motor and Somatosensory Activity
Author:
Affiliation:
1. Industry-Academy Cooperation Team, Hanyang University, Seoul, South Korea
2. Center for Bionics, Korea Institute of Science and Technology, Seoul, South Korea
Funder
Institute of Information & Communications Technology Planning & Evaluation
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Biomedical Engineering,General Neuroscience,Internal Medicine,Rehabilitation
Link
http://xplorestaging.ieee.org/ielx7/7333/10031624/10018407.pdf?arnumber=10018407
Reference69 articles.
1. A review of classification algorithms for EEG-based brain–computer interfaces
2. The Effect of Vibrotactile Feedback on ErrP-based Adaptive Classification of Motor Imagery
3. Differential effects of motor skill acquisition on the primary motor and sensory cortices in healthy humans
4. Single Versus Multiple Events Error Potential Detection in a BCI-Controlled Car Game With Continuous and Discrete Feedback
5. The non-invasive Berlin Brain–Computer Interface: Fast acquisition of effective performance in untrained subjects
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Design of a brain-machine interface for reducing false activations of a lower-limb exoskeleton based on error related potential;Computer Methods and Programs in Biomedicine;2024-10
2. A Survey of Wearable Lower Extremity Neurorehabilitation Exoskeleton: Sensing, Gait Dynamics, and Human–Robot Collaboration;IEEE Transactions on Systems, Man, and Cybernetics: Systems;2024-06
3. Improvement of motor imagery electroencephalogram decoding by iterative weighted Sparse-Group Lasso;Expert Systems with Applications;2024-03
4. Motor Imagery Signal Classification Using Adversarial Learning: A Systematic Literature Review;IEEE Access;2024
5. Deep learning-based framework for real-time upper limb motion intention classification using combined bio-signals;Frontiers in Neurorobotics;2023-07-27
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3