Cross-Task Mental Workload Recognition Based on EEG Tensor Representation and Transfer Learning
Author:
Affiliation:
1. State Key Laboratory of Software Development Environment, Beihang University, Beijing, China
Funder
State Key Laboratory of Software Development Environment
National Natural Science Foundation of China
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Biomedical Engineering,General Neuroscience,Internal Medicine,Rehabilitation
Link
http://xplorestaging.ieee.org/ielx7/7333/10031624/10129969.pdf?arnumber=10129969
Reference41 articles.
1. An EEG-based mental workload estimator trained on working memory task can work well under simulated multi-attribute task
2. Transfer Feature Learning with Joint Distribution Adaptation
3. Using Cross-Task Classification for Classifying Workload Levels in Complex Learning Tasks
4. A practical guide to the selection of independent components of the electroencephalogram for artifact correction
5. Evidence for Quantitative Domain Dominance for Verbal and Spatial Working Memory in Frontal and Parietal Cortex
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. EEG classification of resting state and arithmetic cognitive workload using functional connectivity of different frequency bands and machine learning techniques;Smart Science;2024-08-18
2. Riemannian Locality Preserving Method for Transfer Learning With Applications on Brain-Computer Interface;IEEE Journal of Biomedical and Health Informatics;2024-08
3. The mental workload of ICU nurses performing human‐machine tasks and associated factors: A cross‐sectional questionnaire survey;Journal of Advanced Nursing;2024-04-30
4. Multi-Source Domain Generalization for ECG-Based Cognitive Load Estimation: Adversarial Invariant and Plausible Uncertainty Learning;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14
5. Reproducible machine learning research in mental workload classification using EEG;Frontiers in Neuroergonomics;2024-04-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3