Multi-Stage Audio-Visual Fusion for Dysarthric Speech Recognition With Pre-Trained Models
Author:
Affiliation:
1. School of Artificial Intelligence, Beijing Technology and Business University, Beijing, China
Funder
Humanity and Social Science Youth Foundation of Ministry of Education of China
Humanities and Social Sciences Research Planning Fund of the Ministry of Education of China
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Biomedical Engineering,General Neuroscience,Internal Medicine,Rehabilitation
Link
http://xplorestaging.ieee.org/ielx7/7333/10031624/10081405.pdf?arnumber=10081405
Reference43 articles.
1. Cross-Domain Deep Visual Feature Generation for Mandarin Audio–Visual Speech Recognition
2. Unsupervised learning of visual features by contrasting cluster assignments;caron;Proc Adv Neural Inf Process Syst,2020
3. Recent Progress in the CUHK Dysarthric Speech Recognition System
4. Learning representations by maximizing mutual information across views;bachman;Proc Adv Neural Inf Process Syst,2019
5. Three-dimensional linear articulatory modeling of tongue, lips and face, based on MRI and video images
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Enhancing Pre-Trained ASR System Fine-Tuning for Dysarthric Speech Recognition Using Adversarial Data Augmentation;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14
2. A deep learning approach to dysarthric utterance classification with BiLSTM-GRU, speech cue filtering, and log mel spectrograms;The Journal of Supercomputing;2024-03-20
3. Gammatonegram representation for end-to-end dysarthric speech processing tasks: speech recognition, speaker identification, and intelligibility assessment;Iran Journal of Computer Science;2024-03-10
4. A Strategic Approach for Robust Dysarthric Speech Recognition;Wireless Personal Communications;2024-02
5. Self-Supervised ASR Models and Features for Dysarthric and Elderly Speech Recognition;IEEE/ACM Transactions on Audio, Speech, and Language Processing;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3