Sequential Recommendation with Auxiliary Item Relationships via Multi-Relational Transformer
Author:
Affiliation:
1. University of Illinois Chicago,Department of Computer Science,Chicago,USA
2. Salesforce AI Research,Palo Alto,USA
3. South China Agricultural University,Guangzhou,China
4. Beihang University,School of Cyber Science and Technology,Beijing,China
Funder
Natural Science Foundation of Beijing Municipality
Fundamental Research Funds for the Central Universities
Publisher
IEEE
Link
http://xplorestaging.ieee.org/ielx7/10020192/10020156/10020655.pdf?arnumber=10020655
Reference39 articles.
1. Pre-training Graph Neural Network for Cross Domain Recommendation
2. A survey on knowledge graphs: Representation, acquisition, and applications;ji;IEEE Transactions on Neural Networks and Learning Systems,2021
3. Continuous-Time Sequential Recommendation with Temporal Graph Collaborative Transformer
4. Analogical inference for multi-relational embeddings;liu;International Conference on Machine Learning,2017
5. Personalizing Session-based Recommendations with Hierarchical Recurrent Neural Networks
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Pre-Training with Transferable Attention for Addressing Market Shifts in Cross-Market Sequential Recommendation;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24
2. Explainable Uncertainty Attribution for Sequential Recommendation;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10
3. A novel interactive deep cascade spectral graph convolutional network with multi-relational graphs for disease prediction;Neural Networks;2024-07
4. Rethinking Sequential Relationships: Improving Sequential Recommenders with Inter-Sequence Data Augmentation;Companion Proceedings of the ACM Web Conference 2024;2024-05-13
5. Mutual Wasserstein Discrepancy Minimization for Sequential Recommendation;Proceedings of the ACM Web Conference 2023;2023-04-30
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3