An Optimization Method of Energy Demand Forecasting Method Based on Neural Network

Author:

Zhao Yufan1,Song Ruizhuo1,Li Chengfeng2

Affiliation:

1. School of Automation and Electrical Engineering University of Science and Technology Beijing,Key Laboratory of Knowledge Automation for Industrial Processes of Ministry of Education,Beijing,China,100083

2. Clean Energy Branch of CNOOC Energy Technology & Services Limited, Tianjin,Tianjin,China,300452

Funder

National Natural Science Foundation of China

Fundamental Research funds for the Central Universities

Publisher

IEEE

Reference17 articles.

1. The role of regulatory reforms, market changes, and technology development to make demand response a viable resource in meeting energy challenges

2. Estimating the benefits of cooperation in a residential microgrid: A data driven approach;Rieger;Applied Energy,2016

3. Assessing the benefits of residential demand response in a real time distribution energy market;Siano,2016

4. Dual battery management for renewable energy integration in EV charging stations

5. Short-term load forecast of integrated energy system based on wavelet packet decomposition and recurrent neural network;Zhu;Electric Power Construction,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3