Learn to Adapt to New Environments From Past Experience and Few Pilot Blocks
Author:
Affiliation:
1. Department of Electrical and Electronic Engineering, Faculty of Engineering, Imperial College London, London, U.K
2. Institute of Information and Communication Engineering, Zhejiang University, Hangzhou, China
Funder
Imperial College London
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Artificial Intelligence,Computer Networks and Communications,Hardware and Architecture
Link
http://xplorestaging.ieee.org/ielx7/6687307/10094251/09983851.pdf?arnumber=9983851
Reference30 articles.
1. ComNet: Combination of Deep Learning and Expert Knowledge in OFDM Receivers
2. Adaptive Channel Estimation Based on Model-Driven Deep Learning for Wideband mmWave Systems
3. Deep Residual Learning for Channel Estimation in Intelligent Reflecting Surface-Assisted Multi-User Communications
4. Deep Learning for Channel Sensing and Hybrid Precoding in TDD Massive MIMO OFDM Systems
5. Model-Driven Deep Learning for Physical Layer Communications
Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A comparative climate-resilient energy design: Wildfire Resilient Load Forecasting Model using multi-factor deep learning methods;Applied Energy;2024-08
2. Few-Shot Learning for New Environment Adaptation;GLOBECOM 2023 - 2023 IEEE Global Communications Conference;2023-12-04
3. Optimising multi-factor assistance in a deep learning-based electricity forecasting model with climate resilience: an Australian case study;2023 IEEE PES Innovative Smart Grid Technologies Europe (ISGT EUROPE);2023-10-23
4. Effective Adaptation into New Environment with Few Shots: Applications to OFDM Receiver Design;2023 IEEE 33rd International Workshop on Machine Learning for Signal Processing (MLSP);2023-09-17
5. Deep Learning-Based Channel Estimation for Wideband Hybrid MmWave Massive MIMO;IEEE Transactions on Communications;2023-06
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3