Exploring Compute-in-Memory Architecture Granularity for Structured Pruning of Neural Networks
Author:
Affiliation:
1. Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA
Funder
National Science Foundation
Semiconductor Research Corporation (SRC) and Defense Advanced Research Projects Agency (DARPA) through the Applications Driving Architectures (ADA) Research Center
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Subject
Electrical and Electronic Engineering
Link
https://ieeexplore.ieee.org/ielam/5503868/9991262/9973355-aam.pdf
Reference52 articles.
1. Wide residual networks;zagoruyko;arXiv 1605 07146,2016
2. ASBP: Automatic Structured Bit-Pruning for RRAM-based NN Accelerator
3. SNrram: An Efficient Sparse Neural Network Computation Architecture Based on Resistive Random-Access Memory
4. Sparse ReRAM engine
5. ReCom: An efficient resistive accelerator for compressed deep neural networks
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Neural architecture search for in-memory computing-based deep learning accelerators;Nature Reviews Electrical Engineering;2024-05-20
2. A Heuristic and Greedy Weight Remapping Scheme with Hardware Optimization for Irregular Sparse Neural Networks Implemented on CIM Accelerator in Edge AI Applications;2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC);2024-01-22
3. An 11T1C Bit-Level-Sparsity-Aware Computing-in-Memory Macro With Adaptive Conversion Time and Computation Voltage;IEEE Transactions on Circuits and Systems I: Regular Papers;2024
4. KERNTROL: Kernel Shape Control Toward Ultimate Memory Utilization for In-Memory Convolutional Weight Mapping;IEEE Transactions on Circuits and Systems I: Regular Papers;2024
5. TT-CIM: Tensor Train Decomposition for Neural Network in RRAM-Based Compute-in-Memory Systems;IEEE Transactions on Circuits and Systems I: Regular Papers;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3