An Ensemble Method for Phishing Websites Detection Based on XGBoost
Author:
Affiliation:
1. Purdue University,Dept of Computer Science,West Lafayette,IN,US
2. Harvard University,School of Engineeering and Applied Science,Cambridge,MA,US
Publisher
IEEE
Link
http://xplorestaging.ieee.org/ielx7/9730106/9730125/09730579.pdf?arnumber=9730579
Reference10 articles.
1. Enhancing the precision of phishing classification accuracy using reduced feature set and boosting algorithm
2. Meta-Algorithms for Improving Classification Performance in the Web-phishing Detection Process
3. Bayesian Optimization and Gradient Boosting to Detect Phishing Websites
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Optimizing Phishing Site Detection: Analyzing the Impact of Feature Quantity in Random Forest Model;2024 International Conference on Data Science and Its Applications (ICoDSA);2024-07-10
2. An Investigation of AI-Based Ensemble Methods for the Detection of Phishing Attacks;Engineering, Technology & Applied Science Research;2024-06-01
3. An Investigation into the Performances of the State-of-the-art Machine Learning Approaches for Various Cyber-attack Detection: A Survey;2024 IEEE International Conference on Electro Information Technology (eIT);2024-05-30
4. ABCF: An Adaptive Balanced Multimodal Website Classification Framework;2024 27th International Conference on Computer Supported Cooperative Work in Design (CSCWD);2024-05-08
5. Web Extension For Phishing Website Identification: A Browser-Based Security Solution;2023 International Conference on Research Methodologies in Knowledge Management, Artificial Intelligence and Telecommunication Engineering (RMKMATE);2023-11-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3