Çift Doğrusal CNN Kullanarak Çelik Yüzey Kusurlarının Sınıflandırılması

Author:

Güçlü Emre1ORCID,Aydın İlhan1ORCID,Akın Erhan1ORCID

Affiliation:

1. FIRAT ÜNİVERSİTESİ, MÜHENDİSLİK FAKÜLTESİ

Abstract

Çelik, endüstride oldukça fazla kullanılan yapı malzemelerinden biridir. Çelik üreticileri arasındaki rekabetin artmasıyla birlikte çelik ürünlerin yüzey kalitesi daha önemli bir hale gelmiştir. Çelik yüzeylerde oluşabilecek kusurlar tespit edilemediğinde daha büyük sorunlara neden olabilmektedir. Günümüzde, çelik yüzey kusurlarını algılama sistemleri, geleneksel kusur tespit yöntemlerinin yerini almıştır. Yüzey kusurları, sağlam çelik görünümünden farklı olarak anormal görünüme sahiptir. Bu kusurların tespiti için derin öğrenme tabanlı yöntemlerin kullanılması, pahalı yöntemlere göre birçok avantaja sahiptir. Bu nedenle, Endüstri 4.0 ile birlikte çelik ürünler üzerinde oluşabilecek kusurların tespiti için bilgisayarlı görmeye dayalı yöntemler daha yaygın olarak kullanılmaktadır. Bu çalışmada, çelik yüzeylerde oluşabilecek kusurların sınıflandırılması için çift doğrusal evrişim sinir ağı (Bilinear-CNN) kullanılmıştır. Eğitim için kullanılan veri kümesinde kusurlu ve kusursuz veriler birbirine oldukça benzerdir. Çift doğrusal havuzlama yöntemi, daha yüksek dereceli ve uzamsal sırasız bilgileri çıkarabilme yeteneğine sahiptir. Böylece benzer veri kümelerinde yüksek performans elde ettiği gösterilmiştir. Önerilen yöntemin performansı farklı ağlar için değerlendirilmiştir. %98,26 doğruluk oranıyla en yüksek sonucu Bilinear Xception modeli elde etmiştir. Sonuçlar, çift doğrusal evrişimli sinir ağının benzer görüntülerden oluşan veri kümelerini sınıflandırmada yüksek performans elde ettiğini göstermektedir.

Funder

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu

Publisher

Firat Universitesi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3