Bal Arı Hastalıklarının Sınıflandırılması için ConvMixer, VGG16 ve ResNet101 Tabanlı Topluluk Öğrenme Yaklaşımı

Author:

Üzen Hüseyin1ORCID,Altın Mustafa2ORCID,Balıkçı Çiçek İpek3ORCID

Affiliation:

1. Bingöl Üniversitesi

2. BİNGÖL ÜNİVERSİTESİ, BİNGÖL TEKNİK BİLİMLER MESLEK YÜKSEKOKULU

3. İnönü Üniversitesi

Abstract

Bal arıları birçok etkenden dolayı ekosistemin en önemli bileşenlerinden biridir. Fakat son zamanlarda artan varroa paraziti, iklim değişiklikleri ve böcek istilası gibi etkenlerden dolayı bal arıları tehdit altındadır. Bundan dolayı son zamanlarda gelişmiş yapay zekâ teknikleri ile arılarının analiz edilmesi oldukça önemli bir araştırma konusu olmuştur. Bu çalışmada arı hastalıklarının sınıflandırılması için Evrişimsel sinir ağ mimarileri tabanlı bir topluluk öğrenme yaklaşımı sunulmuştur. ConvMixer, VGG16 ve ResNet101 tabanlı topluluk öğrenme yaklaşımı (CVR-TÖY) olarak adlandırılan bu model temel olarak VGG16, ResNet101 ve ConvMixer sınıflandırıcılarının tahmin skorlarının birleştirmesine dayanmaktadır. Bu sayede farklı yaklaşım teknikleri ile geliştirilen VGG16, ResNet101 ve ConvMixer yapılarının tahmin çıktıları etkili bir şekilde birleştirilerek bal arı hastalık sınıflandırma performansı artırılmıştır. Tahmin skorları birleştirilirken iki yaklaşım denenmiştir. Birinci yaklaşımda modellerin tahmin çıktılarının en yüksek değeri alınarak sınıflandırma tahmini yapılmıştır. İkinci model ise ortalama değer alma yaklaşımıdır. Ortalama değer alma yaklaşımının ortak akıl modeli ile en iyi sonucu ürettiği görülmüştür. Deneysel çalışmalarda 6 farklı kovan probleminden etkilenen arı görüntülerini içeren BeeImage Dataset (BI) veri kümesi kullanılmıştır. Bu deneysel çalışmada önerilen modelden %98.87 F1-skoru elde edilmiştir. Ayrıca yapılan deneysel çalışmada önerilen model son teknolojik modeller ile karşılaştırılmıştır. Karşılaştırma sonucunda önerilen modelin F1-skoru %2.31 daha yüksek performans göstermiştir.

Publisher

Firat Universitesi

Reference41 articles.

1. Muz MN, Özdemir N, Dilek M. Küresel arı sağlığı ve veteriner hekimlik. Veteriner Farmakoloji ve Toksikoloji Derneği Bülteni 2019; 10: 24-30.

2. Öztekin C, Çapa Aydın Y, Yılmaz Tüzün Ö. Biyoloji öğretmen adaylarının genel biyoloji konularındaki kavram yanılgıları, Hacettepe Üniversitesi Eğitim Fakültesi Dergisi 2000; 140–147.

3. Huckle J., "British Bee Journal," ed: British Bee Publications, London, England, 1882.

4. Berkaya SK, Gunal ES, Gunal S. Deep learning-based classification models for beehive monitoring. Ecol Inf 2021; 64: 101353.

5. Bjerge K, Frigaard CE, Mikkelsen PH, Nielsen TH, Misbih M, Kryger P. A computer vision system to monitor the infestation level of Varroa destructor in a honeybee colony. Comput Electron Agric 2019; 164: 104898.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3