Modeling Longitudinal Evolution of Decommissioned Geostationary Satellites using Neural Networks

Author:

Öz İbrahim1ORCID,Özarpa Cevat2ORCID

Affiliation:

1. Ankara Yıldırım Beyazıt Üniversitesi Teknoloji Transfer Ofisi

2. KARABÜK ÜNİVERSİTESİ

Abstract

This study uses neural networks to explore the intricate longitudinal progression of decommissioned geostationary satellites. The goal is to model and predict satellites' longitudinal dynamics across time dimensions. Historical satellite longitude data undergoes thorough preprocessing to train time series neural networks in both single-input and 3-input configurations for all six decommissioned satellites, yielding comprehensive longitudinal behavior insights. Results reveal impressive outcomes: average Mean Squared Error (MSE) between predicted and measured longitudes is 1.55x10-3, with regression close to unity. This convergence implies a strong alignment between the neural network methodology employed and the intricate problem domain. These results accentuate the suitability and effectiveness of the chosen neural network approach in addressing the challenges posed by decommissioned geostationary satellite trajectory modeling. The study's implications span various fields. Insight into long-term orbital shifts aids in understanding satellite behaviors, enhancing trajectory predictions and decision-making in satellite management and space technology advancement. Additionally the research emphasizes the importance of accurate predictions about satellite behavior after decommissioning. This contributes to better mission planning, resource optimization, and more efficient strategies for dealing with space debris.

Publisher

Firat Universitesi

Reference31 articles.

1. Soop EM. Introduction to geostationary orbits 1993: ESA.

2. Oz I. Coverages stabilization of an inclined orbit communication satellite with two axis biases. Journal of the Faculty of Engineering and Architecture 2022; 38:1, pp. 219-230.

3. Oz I, Yilmaz UC. Determination of coverage oscillation for inclined communication satellite. Sakarya University Journal of Science 2020; 24(5), 973-983.

4. ITU Radiocommunication Sector: Regulations and procedures for space radio communication, Recommendation ITU-R S.1003-1, 2021.

5. Inter-Agency Space Debris Coordination Committee (IADC): IADC Space debris mitigation guidelines. 2007; Issue 3.0.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3