Abstract
Makine öğrenmesi tabanlı tahmin yaklaşımlarının finansal piyasalarda geliştirilmesi, hızlı ve hassas karar alma, karmaşıklıkla başa çıkma, risk yönetimi, algoritmik ticaret ve duygusal etkilerin azaltılması gibi avantajlar sağlar. Bu yaklaşımlar, sürekli öğrenme ve adaptasyon yetenekleriyle finansal başarı için rekabet avantajı oluşturabilir. Bu makale çalışmasında, Borsa İstanbul (BIST) 100 endeks tahmini için bellek tabanlı makine öğrenmesi modellerine dayalı bir yaklaşım sunulmuştur. Bu amaçla, ardışık veri değerlendirmesinde popüler olan uzun kısa-süreli bellek (LSTM) ve geçitli tekrarlayan birim (GRU) mimarileri kullanılmıştır. Elde edilen model çıktılarına göre bu modellerin, eğitim ve doğrulama aşamalarında düşük kayıplar gösterdiği ve BIST100 endeksinin genel eğilimlerini başarıyla takip ettiği gözlemlenmiştir. Ancak, modeller piyasa dalgalanmaları ve ani değişimlerde gerçek değerlerden sapmalar göstermiş, bu da belirsizlikleri ve genelleme kapasitelerinin sınırlarını ortaya koymuştur. Geleceğe yönelik tahminler, eğitim veri setindeki desenlere dayanarak yapılmış ancak zamanla artan belirsizlik göstermiştir. Çalışma, makine öğrenmesi algoritmalarının finans verileri üzerindeki kullanım alanı konusunda önemli bilgiler sağlayacak potansiyele sahiptir.
Reference25 articles.
1. Goodfellow I, Bengio Y, Courville A. Deep learning. MIT Press, 2016.
2. Sze V, Chen YH, Yang TJ, Emer JS. Efficient processing of deep neural networks: A tutorial and survey. Proc IEEE, 2017; 105(12): 2295-2329.
3. Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim O, Acharya UR. Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput Biol Med, 2020; 121: 103792.
4. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proc IEEE Conf Comput Vis Pattern Recognit, 2016; pp. 770-778.
5. Ren S, He K, Girshick R, Sun J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv Neural Inf Process Syst, 2015; 28.