Genetik Algoritma Temelli Yeni Bir Sentetik Veri Üretme Yaklaşımının Geliştirilmesi

Author:

AKALIN Fatma1ORCID

Affiliation:

1. SAKARYA ÜNİVERSİTESİ

Abstract

Yapay zeka tabanlı çalışmalar, iş sektörlerinde karar destek sistemi oluşturmak, etkili çıktılar üretmek, sistem verimliliğini arttırmak ve maliyet etkin çözümler sunmak için büyük bir ilgi odağına sahiptir. Özellikle inovasyon sürecinin gelişmesinde, hızlanmasında ve hedef alana evrilmesinde yapay zeka tabanlı çalışmalar ile yenilikler sağlanmaktadır. Bu yeniliklerin gerçekleşmesinde veri, kritik bir anlama sahiptir. Algoritmalar vasıtasıyla eğitilen modellerin bilgisayarlar ya da özel makineler tarafından işlevselleştirilmesinde önemli bir rol oynamaktadır. Bununla birlikte yetersiz veri erişimi, yasal düzenlemeler, etik kurallar, gizlilik prosedürleri, mahremiyet, veri paylaşım kısıtı ve maliyet; verilerin sahip olduğu potansiyelin açığa çıkarılmasının önündeki engellerdir. Bu engelleri aşmak için sentetik veri üretme yaklaşımı tercih edilmektedir. Fakat sentetik veri üretme yaklaşımına ilişkin standart bir çerçeve olmadığı için yeni ve güncel yaklaşımların geliştirilmesine yönelik araştırmalar devam etmektedir. Bu çalışmada genetik algoritma temelli yeni bir sentetik veri üretme yaklaşımı önerilmiştir. Bu doğrultuda orijinal veri kümesinin dinamiğinde yapay veriler üretmek için hedef veri kümesine uyarlanan çaprazlama ve mutasyon genetik operatörleri kullanılarak veri çeşitliliği arttırılmıştır ve yeni bir nesil elde edilmiştir. Ardından üretilen bu nesildeki yapay örneklerin kategori tanımlaması, genetik algoritmanın maliyet fonksiyon bileşeni kullanılarak belirlenmiştir. Son aşamada üretilen yapay verilerin orijinal verilere benzerliğinin başarısını ölçmek için 6 farklı makine öğrenmesi sınıflandırıcısı kullanılmıştır. Zenginleştirilen veri kümesi üzerinde Destek Vektör Makinesi sınıflandırıcısı ile maksimum duyarlılık ölçütü, %100 olarak elde edilmiştir. Bu durum artan veri sayısı ile orantılı olarak eğitim başarısının pozitif yönde eğilim gösterdiğini ifade etmektedir.

Publisher

Firat Universitesi

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3