1. [1] V. K. Mishra, V. Bajaj, A. Kumar, D. Sharma, and G. K. Singh (2017). An efficient method for analysis of EMG signals using improved empirical mode decomposition. AEU - Int. J. Electron. Commun., 72, 200–209.[2] A. Subasi (2012). Classification of EMG signals using combined features and soft computing techniques. Appl. Soft Comput. J., vol. 12, no. 8, pp. 2188–2198.[3] A. Subasi (2013). Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders. Comput. Biol. Med., vol. 43, no. 5, pp. 576–586.[4] R. N. Khushaba, A. Al-Timemy, S. Kodagoda, and K. Nazarpour (2016). Combined influence of forearm orientation and muscular contraction on EMG pattern recognition. Expert Syst. Appl., vol. 61, pp. 154–161, 2016.[5] V. Bajaj, Y. Guo, A. Sengur, S. Siuly, and O. F. Alcin (2017). A hybrid method based on time–frequency images for classification of alcohol and control EEG signals. Neural Comput. Appl., vol. 28, no. 12, pp. 3717–3723.[6] Ö. F. Ertuğrul, Y. Kaya, and R. Tekin (2015). A novel approach for SEMG signal classification with adaptive local binary patterns. Med. Biol. Eng. Comput., pp. 1137–1146.[7] S. M. Mane, R. A. Kambli, F. S. Kazi, and N. M. Singh (2015). Hand motion recognition from single channel surface EMG using wavelet & artificial neural network. Procedia Comput. Sci., vol. 49, no. 1, pp. 58–65.[8] Shie Qian and Dapang Chen (1999). Joint time-frequency analysis. IEEE Signal Process. Mag., vol. 16, no. 2, pp. 52–67.[9] L. Cohen (1995). Time-frequency Analysis.[10] B. S. Shaik, G. V. S. S. K. R. Naganjaneyulu, T. Chandrasheker, and A. V. Narasimhadhan (2015). A Method for QRS Delineation Based on STFT Using Adaptive Threshold. Procedia Comput. Sci., vol. 54, pp. 646–653.[11] A. Ari and D. Hanbay (2016). Detection of Brain Tumor from the MR Images by Using Hybrid Features. International Conference on Natural Science and Engineering (ICNASE’16).[12] C. Zhao, S. Qiao, J. Sun, R. Zhao, and W. Wu (2016). Sparsity-based shrinkage approach for practicability improvement of H-LBP-based edge extraction. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 825, pp. 1–5.[13] Y. Kaya, Ö. F. Ertugrul, and R. Tekin (2015). Two novel local binary pattern descriptors for texture analysis. Appl. Soft Comput. J., vol. 34, pp. 728–735.[14] A. Şengür, Y. Guo, and Y. Akbulut (2016). Time–frequency texture descriptors of EEG signals for efficient detection of epileptic seizure. Brain Informatics, vol. 3, no. 2, pp. 101–108.[15] P. M. Arabi, G. Joshi, and N. Vamsha Deepa (2016). Performance evaluation of GLCM and pixel intensity matrix for skin texture analysis. Perspect. Sci., vol. 8, pp. 203–206.[16] R. M. Haralick and K. Shanmugam (1973), Textural Features for Image Classification. IEEE Trans. Systems, Man, and Cybernetics, 3, 610-621.[17] L. K. Soh and C. Tsatsoulis (1999). Texture analysis of sar sea ice imagery using gray level co-occurrence matrices. IEEE Trans. Geosci. Remote Sens., vol. 37, no. 2 I, pp. 780–795.[18] M. C. Colak, C. Colak, H. Kocatürk, S. Sağiroğlu, and I. Barutçu (2008). Predicting coronary artery disease using different artificial neural network models. Anadolu Kardiyol. Derg., vol. 8, no. 4, pp. 249–54.[19] D. Hanbay, I. Turkoglu, and Y. Demir (2010). Modeling switched circuits based on wavelet decomposition and neural networks. J. Franklin Inst., vol. 347, no. 3, pp. 607–617.[20] C. Sapsanis, G. Georgoulas, A. Tzes, and D. Lymberopoulos (2013). Improving EMG based classification of basic hand movements using EMD. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, pp. 5754–5757.[21] C. Sapsanis (2013). Recognition of basic hand movements using electromyography. 2013.