APPLYING MACHINE LEARNING FOR ANALYSIS AND FORECASTING OF AGRICULTURAL CROP YIELDS

Author:

Mimenbayeva AigulORCID,Issakova GulnurORCID,Tanykpayeva BalausaORCID,Tursumbayeva AinurORCID,Suleimenova RayaORCID,Tulkibaev AlmatORCID

Abstract

Analysis and improvement of crop productivity is one of the most important areas in precision agriculture in the world, including Kazakhstan. In the context of Kazakhstan, agriculture plays a pivotal role in the economy and sustenance of its population. Accurate forecasting of agricultural yields, therefore, becomes paramount in ensuring food security, optimizing resource utilization, and planning for adverse climatic conditions. In-depth analysis and high-quality forecasts can be achieved using machine learning tools. This paper embarks on a critical journey to unravel the intricate relationship between weather conditions and agricultural outputs. Utilizing extensive datasets covering a period from 1990 to 2023, the project aims to deploy advanced data analytics and machine learning techniques to enhance the accuracy and predictability of agricultural yield forecasts. At the heart of this endeavor lies the challenge of integrating and analyzing two distinct types of datasets: historical agricultural yield data and detailed daily weather records of North Kazakhstan for 1990-2023. The intricate task involves not only understanding the patterns within each dataset but also deciphering the complex interactions between them. Our primary objective is to develop models that can accurately predict crop yields based on various weather parameters, a crucial aspect for effective agricultural planning and resource allocation. Using the capabilities of statistical and mathematical analysis in machine learning, a Time series analysis of the main weather factors supposedly affecting crop yields was carried out and a correlation matrix between the factors and crops was demonstrated and analyzed. The study evaluated regression metrics such as Root Mean Squared Error (RMSE) and R2 for Random Forest, Decision Tree, Support Vector Machine (SVM) algorithms. The results indicated that Random Forest generally outperformed the Decision Tree and SVM in terms of predictive accuracy for potato yield forecasting in North Kazakhstan Region. Random Forest Regressor showed the best performance with an R2 =0.97865. The RMSE values ranged from 0.25 to 0.46, indicating relatively low error rates, and the R2 values were generally positive, indicating a good fit of the model to the data. This paper seeks to address these needs by providing insights and predictive models that can guide farmers, policymakers, and stakeholders in making informed decisions.

Publisher

Astana IT University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3