Liposomes containing azithromycin and green tea as an anti-acne treatment: Formulation and Characterization

Author:

Wadaskar Pallavi1,Nirale Komal1,Rajgure Mukul2

Affiliation:

1. Department of Pharmaceutics, Sharadchandra Pawar College of Pharmacy, Dumbarwadi, Maharashtra-412409.

2. Department of Pharmaceutics, P.R. Pote Patil College of Pharmacy, Amravati, Maharashtra -444602.

Abstract

Liposomes and other novel drug delivery carriers are highly adaptable, allowing for the distribution of a wide range of pharmacological compounds. The antibiotic azithromycin is widely regarded as the most effective treatment for acne. Lower efficacy or higher negative effects have led to decreased use of topical azithromycin. In this study, liposomes have been chosen because it is hypothesised that this may lessen the drug's side effects when used in conjunction with Azithromycin. Traditional herbal therapies have been intensively investigated as alternatives to conventional treatments for many ailments due to the possibility for side effects and antibiotic resistance from conventional pharmaceuticals. Thanks to its antibacterial qualities, green tea is one of the most effective natural therapies for acne. The lipid film hydration method was used to create drug-loaded liposomes, and the optimal component ratios were established. Liposomes were studied for their in-vitro drug release properties and characterised for their vesicle size, shape, encapsulation effectiveness, and drug content. Formulations F1 and F6, which included a 1:1 ratio of fat to cholesterol, showed the highest levels of encapsulation efficiency (69.5% and 66.2%, respectively) and in-vitro drug release (82.5 and 82.2 percent, respectively). Carbopol gel has been modified to include liposomal formulations, and the results have been compared to those of commercially available gels that do not use liposomes. Within 24 hours, the release of azithromycin (90.5%) was greater in the non liposomal marketed gel than in the liposomal gel (77.5% and 74.8%) of green tea. Green tea liposomes used in the formulation had a MIC value that was comparable to that of commercially available, non-liposomal gel. It was discovered that azithromycin was more effective than green tea in killing Micrococcus luteus.

Publisher

A and V Publications

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3