Affiliation:
1. Department of Computer Engineering, Bharati Vidyapeeth Deemed to be University College of Engineering Pune 411043, India.
Abstract
The data which is in time stamped format is called as time series data. The time series data is everywhere for example Weather data, Stock market data, health care data, Sensor data, network data, sales data and many more. Time series have various components due to which the time series data became complex. Trend, Seasonality, Cyclical, and irregularities, these are different components. As everyone interested to know about future. That’s why Forecasting using time series data is important point of consideration. This research paper focuses on components of time series data simultaneously study of different time series modelling and forecasting techniques which are based on stochastic processes. Mainly all the models discussed here focus on use of past time series data for forecasting future values. The Research paper covers AR, MA, Random Walk, ARMA, ARIMA, SARIMA, and Exponential Smoothing processes (single, double and triple) which are used for forecasting time series data.
Reference11 articles.
1. Lawton, R. Time Series Analysis and its Applications. Int. J. Forecast. 2001; 17: 299–301.
2. Robert H. Shumway, D. S. S. (2016). TimeSeries Analysis and Its Applications with R Examples. o Title.
3. T.O.Olatayo and Taiwo, A. I. Statistical Modelling and Prediction of Rainfall Time Series Data. Glob. J. Comuter Sci. Technol. 2014; 14: 1–10.
4. Etuk, E. H. and Mohamed, T. M. Time Series Analysis of Monthly Rainfall data for the Gadaref rainfall station, Sudan, by Sarima Methods. Int. J. Sci. Res. Knowl. 2014; 320–327. doi:10.12983/ijsrk-2014-p0320-0327
5. Kumar*, V. Time series modeling and forecasting using stochastic models: A review. Int. J. Eng. Sci. Res. Technol. doi:: 10.5281/zenodo.205828
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献