Techniques, Applications and Issues of Text Mining

Author:

Redddy B Uday Jaswanth1,Rami Reddy CHA Raghu1,Kavya B1

Affiliation:

1. B. Tech, Presidency University, Kolkata, West Bengal 700073.

Abstract

The Tremendous advancements in digital data collecting techniques have resulted in massive large datasets. unstructured data makes up well over 80% of today's data. The identification of wonderful ways and characteristics to learn text - based files from a massive amount of datasets are a major issue. Text mining /Data analytics is the process for identifying interesting and difficult problem patterns in vast quantities of text information. For mining textual material and uncovering useful facts for making predictions and decision making, there are various ways and methods available. Choosing an acceptable and wonderful text/word - based analysis approach improves speed and saves both time required to obtain useful data from huge amount of unstructured data. This research will highlight & study all primary sources carefully and helps in understand few methods/technique’s for text mining.

Publisher

A and V Publications

Reference36 articles.

1. R. Sagayam, A survey of text mining: Retrieval, extraction and in- dexing techniques, International Journal of Computational Engineering Research, vol. 2, no. 5, 2012.

2. N. Padhy, D. Mishra, R. Panigrahi et al., “The survey of data mining applications and feature scope,” arXiv preprint arXiv:1211.5723, 2012.

3. W. Fan, L. Wallace, S. Rich, and Z. Zhang, “Tapping the power of text mining,” Communications of the ACM, vol. 49, no. 9, pp. 76–82, 2006.

4. S. M. Weiss, N. Indurkhya, T. Zhang, and F. Damerau, Text mining: predictive methods for analyzing unstructured information. Springer Science and Business Media, 2010.

5. S.-H. Liao, P.-H. Chu, and P.-Y. Hsiao, “Data mining techniques and applications–a decade review from 2000 to 2011,” Expert Systems with Applications, vol. 39, no. 12, pp. 11 303–11 311, 2012.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3