Effect of Tree Leaf Litterfall on available Nutrients and Organic Carbon Pools of Soil

Author:

Bhardwaj K. K.1,Singh M. K.2,Raj Dev1,Devi Sonia1,Dahiya Garima1,Sharma S. K.3,Sharma M. K.1

Affiliation:

1. Department of Soil Science, CCS HAU, Hisar.

2. Department of Forestry, CCS HAU, Hisar.

3. Department of Agronomy, CCS HAU, Hisar.

Abstract

A study was conducted to investigate the effect of leaf litterfall of shelterbelt, Azadirachta indica, Ailanthus excels and Prosopis cineraria and control (devoid of trees) on available nutrients and organic carbon pools of soil from 3 distances (2, 5 and 10m) The total litterfall during the study period ranged between 1712 and 4126kg/ha and it was found maximum in the month of January and it was minimum in February in different plantations. Annual litterfall showed considerable variation among different plantations. Litter accumulation under the different plantations canopy was highest in the shelterbelt followed by Prosopis cineraria and lowest in the Azadirachta indica. There was improvement in soil organic carbon, dissolved organic carbon, microbial biomass carbon, available macro (N, P and K) and micronutrients (Zn, Fe, Mn and Cu) tree species when compared to field without trees. Significant improvement in soil organic carbon (0.14 to 0.26 %), available N (55.9 to 116.6kg/ha) P (9.6 to 13.6kg/ha) and K (188.9 to 248.3kg/ha) was observed under these tree species compared to field without trees. The content of Zn, Cu, Fe and Mn and was 15, 25, 40 and 51 percent, respectively higher under these tree species than the control field. The amount of nutrients returned to the soils through litter was significantly highest at 2m distance under different plantations. The present study indicated that these available nutrients and organic carbon pools improved significantly across the different land use system. Due to intensive cultivation and monocropping, the fertility of soil is deteriorating day by day. Simultaneously it is creating a pressure on the natural resources like soil because the population is increasing day by day. Therefore, it is wise to use degraded and problematic soil for cultivation. Agroforestry systems have been recognized as an alternative for the rehabilitation of degraded areas and it provides ecosystem services and reduces human impacts on natural forests (Nair et al., 2009). Tree based land use systems have special role in reclamation of wastelands, use of poor-quality waters, organic carbon build up and moderating climate change related risks. In areas of Haryana and Rajasthan trees like Prosopis cineraria, Azadirachta indica and Ailanthus excels are more beneficial under adverse environments due to their drought hardiness, resistance to inhospitable climate and assured economic returns. These tree species can be grown on soils having poor fertility, moisture deficit and high soil temperature.

Publisher

A and V Publications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3