Self-Nano Emulsifying Drug Delivery System: A Potential Solution to the Challenges of Oral Delivery of Poorly Water-Soluble Drugs

Author:

S. Buddhadev Sheetal1,C. Garala Kevinkumar2

Affiliation:

1. Research Scholar, School of Pharmaceutical Sciences, Atmiya University, Rajkot, India, 360005.

2. Professor, School of Pharmaceutical Sciences, Atmiya University, Rajkot, Gujarat, India 360005.

Abstract

Lipid-based drug delivery systems (LBDDS) are the most promising technique to formulate the poorly water soluble drugs. Nanotechnology strongly influences the therapeutic performance of hydrophobic drugs and has become an essential approach in drug delivery research. Self-Nanoemulsifying drug delivery systems (SNEDDS) are a vital strategy that combines benefits of LBDDS and nanotechnology. SNEDDS are now preferred to improve the formulation of drugs with poor aqueous solubility. SNEDDS are isotropic mixtures composed of oils, surfactants, and occasionally cosolvents. The ability of these formulations and methods to produce nanoemulsions or fine oil-in-water (o/w) emulsions after moderate stirring and dilution by water phase along the GI tract. SNEDDS has garnered attention during recent years as it improves oral bioavailability, reduces drug dose, and increases drug protection from unsuitable environment in the gastrointestinal tract. It can solve the problems related to the dissolution and bioavailability of the Biopharmaceutics Classifcation System Class II and IV drugs. This review shortly describes the ambiguity between nanoemulsions and microemulsions, mechanism of self-emulsifications, composition and function of various excipients of SNEDDS. This review discusses characterization of SNEDDS, advantage of SNEEDS over other emulsion, biopharmaceutical aspects, and limitation as well as future views. The SNEDDS is a potential formulation for drug delivery. Owing to its small particle size, large surface area, high encapsulation efficiency, and high drug loading, the SNEDDS can improve the rate and extent of oral absorption by maximizing drug solubility in the intestinal absorption site. Moreover, because of the lipid-based formulation of SNEDDS, it can stimulate and enhance lymphatic transport of drugs to avoid hepatic first-pass metabolism, and thus improve their bioavailability.

Publisher

A and V Publications

Subject

Pharmacology (medical),Pharmacology, Toxicology and Pharmaceutics (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3