Microparticulation of Levofloxacin HCl by Crystallo-co-agglomeration Technique

Author:

Prajapati B. G.1,P. Patel Chandresh1,Basu Biswajit2

Affiliation:

1. Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Ganpat Vidyanagar 384012, Dist. – Mehsana (Gujarat), India.

2. Bengal School of Technology, Sugandha, Delhi Road, Hooghly, Pin - 712 102, W.B.

Abstract

Particle engineering techniques have gained a unique place in the present pharma industry to improve physicochemical properties of the drugs. The aim of this research work was to formulate and evaluate directly compressible agglomerates of Levofloxacin HCl with a view to improve their micromeritic properties and thereby to reduce the cost of production. Fluoroquinolone anti-infective, is used to treat bacterial conjunctivitis, sinusitis, chronic bronchitis, community- acquired pneumonia and pneumonia caused by penicillin resistant strains of Streptococcus pneumonia. Some of the fluoroquinolone high dose’s exhibit poor compressibility and flow properties, hence may not be suitable candidate for direct compression process, but by applying the crystallo-co-agglomeration (CCA) technique, the attempt may be made to change the properties of these molecules to make them suitable candidates for direct compression. This investigation was aimed to utilize CCA process to develop spherical agglomerates of levofloxacin HCl in selected polymers in different ratio. The developed spherical agglomerates of levofloxacin HCl may exhibit improved micrometric and dissolution properties hence may be suitable for direct compression process. Results indicated that micromeritic, mechanical and compressional properties of the agglomerates were greatly influenced by nature and type of polymer incorporated. The mean release time, mean dissolution time, dissolution efficiency, Q30 and Q90 of the tablets prepared from agglomerates showed remarkable increase in CCA compared to tablets prepared by wet granulation. Observations also revealed that by varying the type and concentration of polymer, desired release rate can be obtained.

Publisher

A and V Publications

Subject

Pharmacology (medical),Pharmacology, Toxicology and Pharmaceutics (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3