Affiliation:
1. Department of Pharmacy, Sekolah Tinggi Ilmu Farmasi (STIFAR) Riau, Pekanbaru, Indonesia.
2. Department of Pharmacy, Faculty of Mathematic and Natural Science, Universitas Islam Indonesia, Yogyakarta, Indonesia.
3. Department of Pharmaceutics, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia.
Abstract
This study aimed to optimize the diclofenac sodium (DS)-loaded nanoemulsion (DSNE)s components, to characterize the optimum formula of DSNEs, including determining its skin penetration ability. DSNEs were optimized by the aqueous titration method to decide the optimum ratio of each component. The yielded diagram of pseudo-ternary phase was used on the considerationof the optimum formulas. The characterization of three optimum DSNEs was done by measuring the globule size, polydispersity index, zeta potential, pH, viscosity, kinetic stability, and ex-vivo permeation. One Way ANOVA (95% confidence interval) was used to analyze the cumulative DS penetrated. The optimum formulations were found with the oil:smix (surfactant:cosurfactant) ratio of 1:7(1:1), 1:7(2:1), and 1:7(3:1), which coded as DSNE1, DSNE2, and DSNE3, respectively. The three optimum formulations possessed the average droplet size of below 200nm, polydispersity index of lower than 0.7, and zeta potential of above -30 mV, respectively. There were no phase separations in the centrifugation test. DSNE3 possessed the highest DS penetrated and flux compared to other formulations. The optimization of DSNEs yielded three optimum formulations with good characteristics in accordance with the acceptance criteria of nanoemulsions. Furthermore, the smaller particle size and higher concentration of T80 enhanced the ability of DS penetration.
Subject
Pharmacology (medical),Pharmacology, Toxicology and Pharmaceutics (miscellaneous)