Characterization and Reverse Engineering of Pharmaceuticals: Role of Thermoanalytical Techniques

Author:

Bal Gobardhan1,K Lakshmi1,M Rajkumar2,C. Mohanta Bibhash3

Affiliation:

1. Chettinad School of Pharmaceutical Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam - 603103, Tamil Nadu, India.

2. Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hajipur - 844102, Bihar, India.

3. Department of Pharmacy, Central University of South Bihar, Gaya - 824236, Bihar, India.

Abstract

During pharmaceutical or biopharmaceutical drug product development, one of the most important steps to be followed is characterization and reverse engineering of the drug product. Out of so many characterization tools and orthogonal reverse engineering techniques, thermoanalytical methods are the most useful techniques. Different thermoanalytical techniques are used to identify, quantify and understand the interaction between different polymorphic forms of drug substances and excipients. These techniques are also used to monitor the physical form (amorphous or crystalline) of the drug substance in drug product throughout its manufacturing processes and helps in identifying, omitting or modifying the steps or processes responsible for change in physical or polymorphic form of the drug substance in the finished drug product. Thermoanalytical techniques are not only useful for characterization of small molecules but also extensively applied in analysis of biological samples and nano-formulations. In current scenario, pharmaceutical development specifically during generic drug development the most useful step is the reverse engineering. When reverse engineering of drug product is concerned, thermoanalytical techniques are the best tools to be used to prove the similarity of physico-chemical properties or same state of matter or arrangement of matter between test and reference products. However, in earlier days these techniques were not used as frequently as the other techniques like spectroscopy and chromatography. Various reasons for limited use of thermoanalytical techniques were unavailability of software or compatible hardware, manual sampling process and a tedious process of manual calculation which consumes lots of time. Now a day, due to advancement of technology, automation, use of robotics, and better understanding, and the thermal analysis not only become a powerful tool but also increase the throughput. The present review focuses on some of the most commonly used Thermoanalytical techniques e.g. Differential Scanning Calorimeter (DSC), Thermogravimetric Analysis (TGA), Solution Calorimeter (SC), Thermo Mechanical Analysis (TMA) and Isothermal Titration Calorimeter (ITC) for characterization and reverse engineering of different dosage forms like solid oral dosage forms, injectable formulation, inhalation formulation, ophthalmic formulation, and biosimilar formulation products such as peptides and proteins using specific case studies.

Publisher

A and V Publications

Subject

Pharmacology (medical),Pharmacology, Toxicology and Pharmaceutics (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3