Efavirenz cocrystals with Ascorbic acid: A Strategy for Polymorphic Modification and improvement of Dissolution properties

Author:

S. Gurav Atul1,S. Kulkarni Ajit2

Affiliation:

1. Gourishankar Education Society's, Satara College of Pharmacy, Satara, MS, India.

2. Principal, Gourishankar Institute of Pharmaceutical Education and Research, Limb, Satara, MS, India.

Abstract

The objective of this research was to improve the solubility and dissolution rate of Efavirenz (EFA), a BCS II drug utilized for HIV infection treatment, by cocrystallization with ascorbic acid (AA). An in silico analysis indicated that EFA and AA exhibited physical interaction and compatibility. EFA exists in two polymorphic forms, I and II, with varying crystalline habits, where polymorph II presents better solubility and dissolution rate. Cocrystals were prepared using the solvent evaporation method by varying AA concentration and temperature. FTIR and NMR analysis confirmed the absence of chemical interaction between EFA and AA. Increasing AA concentration and temperature significantly increased the saturation solubility. DSC, XRD and SEM analysis revealed a shift in the endothermic peak of EFA, change in intensity with 2θ values, and modified surface morphology respectively. This also confirmed a polymorphic structure change in the cocrystals due to high heating rates and maximum crystallization rate. The dissolution rate of the cocrystals was enhanced by the optimized batch, which contained an intermediate concentration of AA and was subjected to the highest temperature condition, and the data fitted well with the Higuchi model of kinetics. The stability of the cocrystals was also evaluated by accelerated stability testing to determine the percentage of drug content. Thus, cocrystallization with AA proved to be a suitable approach for enhancing the dissolution characteristics and polymorphic modification of BCS II drugs, such as EFA.

Publisher

A and V Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3