Effect of N'-Benzyl Substituted Uracil and the Analogues on HIV-1 Inhibition

Author:

Nesterova Olga1,Babaskin Dmitrii1,Tikhonova Yuliya1,Molodozhnikova Natalia1,Kondrashev Sergey1

Affiliation:

1. I. M. Sechenov First Moscow State Medical University, Moscow, Russian Federation.

Abstract

The aim of the research is to study the effect of the synthesis of uracil derivatives on the HIV-1 activity. To achieve the goal, the following tasks were determined: to study the specificity of possible compounds for HIV-1 treatment; to synthesize uracil derivatives; to study the effect of the compounds on HIV-1 replication in vitro and select the most optimal concentrations, considering the cytotoxic effect; to determine the most effective anti-HIV-1 compounds for further research. Thus, nine new uracil analogues have been synthesized and proved to be inhibitors of HIV-1. Key structural modifications included replacement of the 6-chloro group of 1-benzyl-6-chloro-3-(3,5-dimethylbenzyl) uracil by other functional groups or N (1)-alkylation of 3-(3,5-dimethylbenzyl)-5-fluorouracil. These compounds showed only micromolar potency against HIV-1 in MT-4, though two of them; 6-azido-1-benzyl-3-(3,5-dimethylbenzyl) uracil and 6-amino-1-benzyl-3-(3,5-dimethylbenzyl) uracil were highly potent (half maximal effective concentration =0.081 and 0.069μM) and selective (selectivity index =679 and 658), respectively. Structure-activity relationships among the newly synthesized uracil analogues suggest the importance of the H-bond formed between 6-amino group of 6-amino-1-benzyl-3-(3,5-dimethylbenzyl) uracil and amide group of HIV-1 reverse transcriptase. Two 6-substituted 1-benzyl-3-(3,5-dimethylbenzyl) uracils, (6-azido-1-benzyl-3-(3,5-dimethylbenzyl) uracil and 6-amino-1-benzyl-3-(3,5-dimethylbenzyl) uracil) were discovered as novel anti-HIV agents. Compound’s activity against HIV-1 was determined based on inhibition of virus-induced cytopathogenicity in MT-4 cells. The compounds were tested for efficacy in infected cells and cytotoxicity. These compounds should be further pursued for their toxicity and pharmacokinetics in vivo as well as antiviral activity against non-nucleoside reverse transcriptase inhibitor-resistant strains. Thus, it will contribute to the development of a new generation of compounds effective against different viruses, considering their quickly mutation and increased resistance.

Publisher

A and V Publications

Subject

Pharmacology (medical),Pharmacology, Toxicology and Pharmaceutics (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3