Antifungal potential of green synthesized silver nanoparticles (AgNPS) from the stem bark extract of Kigelia pinnata

Author:

Ravi Lokesh1,Kannabiran Krishnan2

Affiliation:

1. Department of Botany, St. Joseph’s College (Autonomous), Bengaluru - 27.

2. Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore-14.

Abstract

Aqueous extract of bark of Kigelia pinnata was used as reducing source for the biological green synthesis of AgNPs. The synthesized particles were characterized by UV-Visible spectrum, XRD, SEM, dynamic light scattering (DLS). The anti-fungal activity of AgNPs was evaluated against Aspergillus niger (MTCC:281), Aspergillus flavus (MTCC:277) and Candida albicans (MTCC:227) by agar diffusion method. Particle size of AgNPs was measured as 76.4nm ± 6.3nm and Zeta potential was stable at -43.2mV using DLS analysis. SEM analysis measured the size of AgNPs as ~75nm. XRD analysis confirmed that the synthesized NPs were silver (Ag), based on the JCPDS entry 85-1355 and it is crystalline in nature. The size of the crystal was calculated as 10nm using the Scherrer formula. The AgNPs demonstrated significant anti-fungal activity against C. albicans (MIC:15.6µg/ml), A. niger (MIC:62.4µg/ml) and A. flavus (MIC:31.2µg/ml). These results confirm that AgNPs synthesized using K. pinnata barks could be used as potential antifungal agent against fungal pathogens.

Publisher

A and V Publications

Subject

Pharmacology (medical),Pharmacology, Toxicology and Pharmaceutics (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3